Face numbers of barycentric subdivisions of cubical complexes

نویسندگان

چکیده

The h-polynomial of the barycentric subdivision any n-dimensional cubical complex with nonnegative h-vector is shown to have only real roots and be interlaced by Eulerian polynomial type Bn. This result applies subdivisions shellable complexes and, in particular, convex polytopes answers affirmatively a question Brenti, Mohammadi Welker.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Face Vectors of Barycentric Subdivisions of Manifolds

We study face vectors of barycentric subdivisions of simplicial homology manifolds. Recently, Kubitzke and Nevo proved that the g-vector of the barycentric subdivision of a Cohen–Macaulay simplicial complex is an M -vector, which in particular proves the g-conjecture for barycentric subdivisions of simplicial homology spheres. In this paper, we prove an analogue of this result for Buchsbaum sim...

متن کامل

Dual Complexes of Cubical Subdivisions of R n ∗

We use a distortion to define the dual complex of a cubical subdivision of R as an n-dimensional subcomplex of the nerve of the set of n-cubes. Motivated by the topological analysis of high-dimensional digital image data, we consider such subdivisions defined by generalizations of quadand oct-trees to n dimensions. Assuming the subdivision is balanced, we show that mapping each vertex to the ce...

متن کامل

Dual Complexes of Cubical Subdivisions of ℝ n

We use a distortion to define the dual complex of a cubical subdivision of R as an n-dimensional subcomplex of the nerve of the set of n-cubes. Motivated by the topological analysis of high-dimensional digital image data, we consider such subdivisions defined by generalizations of quadand oct-trees to n dimensions. Assuming the subdivision is balanced, we show that mapping each vertex to the ce...

متن کامل

The Lefschetz Property for Barycentric Subdivisions of Shellable Complexes

We show that an ’almost strong Lefschetz’ property holds for the barycentric subdivision of a shellable complex. From this we conclude that for the barycentric subdivision of a CohenMacaulay complex, the h-vector is unimodal, peaks in its middle degree (one of them if the dimension of the complex is even), and that its g-vector is an M -sequence. In particular, the (combinatorial) g-conjecture ...

متن کامل

f-VECTORS OF BARYCENTRIC SUBDIVISIONS

For a simplicial complex or more generally Boolean cell complex ∆ we study the behavior of the f and h-vector under barycentric subdivision. We show that if ∆ has a non-negative h-vector then the h-polynomial of its barycentric subdivision has only simple and real zeros. As a consequence this implies a strong version of the Charney-Davis conjecture for spheres that are the subdivision of a Bool...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2021

ISSN: ['1565-8511', '0021-2172']

DOI: https://doi.org/10.1007/s11856-021-2253-7